

Django Two-Factor Authentication Documentation

Complete Two-Factor Authentication for Django. Built on top of the one-time
password framework django-otp [https://pypi.python.org/pypi/django-otp] and Django’s built-in authentication framework
django.contrib.auth for providing the easiest integration into most Django
projects. Inspired by the user experience of Google’s Two-Step Authentication,
allowing users to authenticate through call, text messages (SMS) or by using a
token generator app like Google Authenticator.

Contents:

	Requirements
	Django

	Python

	django-otp

	django-formtools

	Installation
	Setup

	Yubikey Setup

	Configuration
	General Settings

	Twilio Gateway

	Fake Gateway

	Implementing
	Limiting access to certain views

	Enforcing two-factor

	Admin Site

	Signals

	Management Commands
	Status

	Disable

	Class Reference
	Admin Site

	Decorators

	Models

	Middleware

	Signals

	Template Tags

	Views

	View Mixins

	Release Notes
	1.6.2

	1.6.1

	1.6.0

	1.5.0

	1.4.0

	1.3.1

	1.3.0

	1.2.2

	1.2.1

	1.2.0

	1.1.1

	1.1.0

	1.0.0

	0.5.0

	0.4.0

	0.3.1

	0.3.0

	0.2.3

	0.2.2

	0.2.1

	0.2.0

I would love to hear your feedback on this application. If you run into
problems, please file an issue on GitHub [https://github.com/Bouke/django-two-factor-auth/issues], or contribute to the project by
forking the repository and sending some pull requests.

This application is currently translated into English, Dutch, Hebrew, Arabic,
German, Chinese, Spanish, French, Swedish, Portuguese (Brazil), Polish,
Italian, Hungarian, Finnish and Danish. You can contribute your own language
using Transifex [https://www.transifex.com/projects/p/django-two-factor-auth/].

Indices and tables

	Index

	Module Index

	Search Page

Requirements

Django

All Django versions listed by the Django Project under Supported versions [https://docs.djangoproject.com/en/dev/internals/release-process/#supported-versions]
are supported. Currently this list includes Django 1.8, 1.10 and 1.11.

Python

The following Python versions are supported: 2.7, 3.4, 3.5 and 3.6 with a
limit to what Django itself supports. As support for older Django versions is
dropped, the minimum version might be raised. See also What Python version can
I use with Django? [https://docs.djangoproject.com/en/dev/faq/install/#what-python-version-can-i-use-with-django].

django-otp

This project is used for generating one-time passwords. Version 0.3.x and above
are supported.

django-formtools

Formerly known as django.contrib.formtools, it has been separated from
Django 1.8 into a new package. Version 1.0 is supported.

Installation

You can install from PyPI [https://pypi.python.org/pypi/django-two-factor-auth] using pip to install django-two-factor-auth
and its dependencies:

$ pip install django-two-factor-auth

Setup

Add the following apps to the INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'django_otp',
 'django_otp.plugins.otp_static',
 'django_otp.plugins.otp_totp',
 'two_factor',
)

Add the django-otp middleware to your MIDDLEWARE_CLASSES. Make sure
it comes after AuthenticationMiddleware:

MIDDLEWARE_CLASSES = (
 ...
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django_otp.middleware.OTPMiddleware',
 ...
)

Point to the new login pages in your settings.py:

from django.core.urlresolvers import reverse_lazy

LOGIN_URL = 'two_factor:login'

this one is optional
LOGIN_REDIRECT_URL = 'two_factor:profile'

Add the routes to your project url configuration:

urlpatterns = [
 url(r'', include('two_factor.urls', 'two_factor')),
 ...
]

Warning

Be sure to remove any other login routes, otherwise the two-factor
authentication might be circumvented. The admin interface should be
automatically patched to use the new login method.

Yubikey Setup

In order to support Yubikeys [https://www.yubico.com/products/yubikey-hardware/], you have to install a plugin for django-otp:

$ pip install django-otp-yubikey

Add the following app to the INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'otp_yubikey',
)

This plugin also requires adding a validation service, through wich YubiKeys
will be verified. Normally, you’d use the YubiCloud for this. In the Django
admin, navigate to YubiKey validation services and add an item. Django
Two-Factor Authentication will identify the validation service with the
name default. The other fields can be left empty, but you might want to
consider requesting an API ID along with API key and using SSL for
communicating with YubiCloud.

You could also do this using Django’s manage.py shell:

$ python manage.py shell

>>> from otp_yubikey.models import ValidationService
>>> ValidationService.objects.create(
... name='default', use_ssl=True, param_sl='', param_timeout=''
...)
<ValidationService: default>

Configuration

General Settings

	TWO_FACTOR_PATCH_ADMIN (default: True)

	Whether the Django admin is patched to use the default login view.

Warning

The admin currently does not enforce one-time passwords being set for
admin users.

	TWO_FACTOR_CALL_GATEWAY (default: None)

	Which gateway to use for making phone calls. Should be set to a module or
object providing a make_call method. Currently two gateways are bundled:

	'two_factor.gateways.twilio.gateway.Twilio' for making real phone calls using
Twilio [http://www.twilio.com/].

	'two_factor.gateways.fake.Fake' for development, recording tokens to the
default logger.

	TWO_FACTOR_SMS_GATEWAY (default: None)

	Which gateway to use for sending text messages. Should be set to a module or
object providing a send_sms method. Currently two gateways are bundled:

	'two_factor.gateways.twilio.gateway.Twilio' for sending real text messages using
Twilio [http://www.twilio.com/].

	'two_factor.gateways.fake.Fake' for development, recording tokens to the
default logger.

	LOGIN_URL

	Should point to the login view provided by this application as described in
setup. This login view handles password authentication followed by a one-time
password exchange if enabled for that account. This can be a URL path or URL
name as defined in the Django documentation.

See also LOGIN_URL [https://docs.djangoproject.com/en/dev/ref/settings/#login-url].

	LOGIN_REDIRECT_URL

	This application provides a basic page for managing one’s account. This view
is entirely optional and could be implemented in a custom view. This can be a
URL path or URL name as defined in the Django documentation.

See also LOGIN_REDIRECT_URL [https://docs.djangoproject.com/en/dev/ref/settings/#login-redirect-url].

	LOGOUT_REDIRECT_URL

	Should point to a view that the user is redirected to after loging out. It was
added in Django 1.10, and also adapted by this application. This can be a
URL path or URL name as defined in the Django documentation.

See also LOGOUT_REDIRECT_URL [https://docs.djangoproject.com/en/dev/ref/settings/#logout-redirect-url].

	TWO_FACTOR_QR_FACTORY

	The default generator for the QR code images is set to SVG. This
does not require any further dependencies, however it does not work
on IE8 and below. If you have PIL, Pillow or pyimaging installed
you may wish to use PNG images instead.

	'qrcode.image.pil.PilImage' may be used for PIL/Pillow

	'qrcode.image.pure.PymagingImage' may be used for pyimaging

For more QR factories that are available see python-qrcode [https://pypi.python.org/pypi/qrcode].

	TWO_FACTOR_TOTP_DIGITS (default: 6)

	The number of digits to use for TOTP tokens, can be set to 6 or 8. This
setting will be used for tokens delivered by phone call or text message and
newly configured token generators. Existing token generator devices will not
be affected.

Warning

The Google Authenticator app does not support 8 digit codes (see
the upstream ticket [https://code.google.com/p/google-authenticator/issues/detail?id=327]). Don’t set this option to 8 unless all of your
users use a 8 digit compatible token generator app.

	PHONENUMBER_DEFAULT_REGION (default: None)

	The default region for parsing phone numbers. If your application’s primary
audience is a certain country, setting the region to that country allows
entering phone numbers without that country’s country code.

Twilio Gateway

To use the Twilio gateway, you need first to install the Twilio client [https://pypi.python.org/pypi/twilio]:

$ pip install twilio

Next, you also need to include the Twilio urlpatterns. As these urlpatterns are
all defined using a single Django namespace, these should be joined with the
base urlpatterns, like so:

urls.py
from two_factor.urls import urlpatterns as tf_urls
from two_factor.gateways.twilio.urls import urlpatterns as tf_twilio_urls

urlpatterns = [
 url(r'', include(tf_urls + tf_twilio_urls, 'two_factor')),
]

Additionally, you need to enable the``ThreadLocals`` middleware:

MIDDLEWARE_CLASSES = (
 ...

 # Always include for two-factor auth
 'django_otp.middleware.OTPMiddleware',

 # Include for twilio gateway
 'two_factor.middleware.threadlocals.ThreadLocals',
)

	
class two_factor.gateways.twilio.gateway.Twilio

	Gateway for sending text messages and making phone calls using Twilio [http://www.twilio.com/].

All you need is your Twilio Account SID and Token, as shown in your Twilio
account dashboard.

	TWILIO_ACCOUNT_SID

	Should be set to your account’s SID.

	TWILIO_AUTH_TOKEN

	Should be set to your account’s authorization token.

	TWILIO_CALLER_ID

	Should be set to a verified phone number. Twilio [http://www.twilio.com/] differentiates between
numbers verified for making phone calls and sending text messages.

Fake Gateway

	
class two_factor.gateways.fake.Fake

	Prints the tokens to the logger. You will have to set the message level of
the two_factor logger to INFO for them to appear in the console.
Useful for local development. You should configure your logging like this:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 },
 },
 'loggers': {
 'two_factor': {
 'handlers': ['console'],
 'level': 'INFO',
 }
 }
}

Implementing

Users can opt-in to enhanced security by enabling two-factor authentication.
There is currently no enforcement of a policy, it is entirely optional.
However, you could override this behaviour to enforce a custom policy.

Limiting access to certain views

For increased security views can be limited to two-factor-enabled users. This
allows you to secure certain parts of the website. Doing so requires a
decorator, class mixin or a custom inspection of a user’s session.

Decorator

You can use django-otp’s built-in otp_required()
decorator to limit access to two-factor-enabled users:

from django_otp.decorators import otp_required

@otp_required
def my_view(request):
 pass

Mixin

The mixin OTPRequiredMixin can be used to
limit access to class-based views (CBVs):

class ExampleSecretView(OTPRequiredMixin, TemplateView):
 template_name = 'secret.html'

Custom

The method is_verified() is added through django-otp’s
OTPMiddleware which can be used to check if the
user was logged in using two-factor authentication:

def my_view(request):
 if request.user.is_verified():
 # user logged in using two-factor
 pass
 else:
 # user not logged in using two-factor
 pass

Enforcing two-factor

Forcing users to enable two-factor authentication is not implemented. However,
you could create your own custom policy.

Admin Site

By default the admin login is patched to use the login views provided by this
application. Patching the admin is required as users would otherwise be able
to circumvent OTP verification. See also TWO_FACTOR_PATCH_ADMIN.
Be aware that certain packages include their custom login views, for example
django.contrib.admindocs. When using said packages, OTP verification
can be circumvented. Thus however the normal admin login view is patched,
OTP might not always be enforced on the admin views. See the next paragraph
on how to do this.

In order to only allow verified users (enforce OTP) to access the admin pages,
you have to use a custom admin site. You can either use
AdminSiteOTPRequired or
AdminSiteOTPRequiredMixin. See also the Django
documentation on Hooking AdminSite instances into your URLconf [https://docs.djangoproject.com/en/dev/ref/contrib/admin/#hooking-adminsite-instances-into-your-urlconf].

If you want to enforce two factor authentication in the admin and use the
default admin site (e.g. because 3rd party packages register to
django.contrib.admin.site) you can monkey patch the default AdminSite
with this. In your urls.py:

from django.contrib import admin
from two_factor.admin import AdminSiteOTPRequired

admin.site.__class__ = AdminSiteOTPRequired

urlpatterns = [
 url(r'^admin/', admin.site.urls),
 ...
]

Signals

When a user was successfully verified using a OTP, the signal
user_verified is sent. The signal includes the
user, the device used and the request itself. You can use this signal for
example to warn a user when one of his backup tokens was used:

from django.dispatch import receiver
from two_factor.compat import get_current_site
from two_factor.signals import user_verified

@receiver(user_verified)
def test_receiver(request, user, device, **kwargs):
 current_site = get_current_site(request)
 if device.name == 'backup':
 message = 'Hi %(username)s,\n\n'\
 'You\'ve verified yourself using a backup device '\
 'on %(site_name)s. If this wasn\'t you, your '\
 'account might have been compromised. You need to '\
 'change your password at once, check your backup '\
 'phone numbers and generate new backup tokens.'\
 % {'username': user.get_username(),
 'site_name': current_site.name}
 user.email_user(subject='Backup token used', message=message)

Management Commands

Status

	
class two_factor.management.commands.two_factor_status.Command(stdout=None, stderr=None, no_color=False)

	Command to check two-factor authentication status for certain users.

The command accepts any number of usernames, and will list if OTP is
enabled or disabled for those users.

Example usage:

manage.py status bouke steve
bouke: enabled
steve: disabled

Disable

	
class two_factor.management.commands.two_factor_disable.Command(stdout=None, stderr=None, no_color=False)

	Command for disabling two-factor authentication for certain users.

The command accepts any number of usernames, and will remove all OTP
devices for those users.

Example usage:

manage.py disable bouke steve

Class Reference

Admin Site

	
class two_factor.admin.AdminSiteOTPRequired(name='admin')

	AdminSite enforcing OTP verified staff users.

	
class two_factor.admin.AdminSiteOTPRequiredMixin

	Mixin for enforcing OTP verified staff users.

Custom admin views should either be wrapped using admin_view() or
use has_permission() in order to secure those views.

Decorators

	
django_otp.decorators.otp_required(view=None, redirect_field_name=u'next', login_url=None, if_configured=False)

	Similar to login_required(), but
requires the user to be verified. By default, this redirects users
to OTP_LOGIN_URL.

	Parameters:	if_configured (bool) – If True, an authenticated user with no confirmed
OTP devices will be allowed. Default is False.

	
two_factor.views.utils.class_view_decorator(function_decorator)

	Converts a function based decorator into a class based decorator usable
on class based Views.

Can’t subclass the View as it breaks inheritance (super in particular),
so we monkey-patch instead.

From: http://stackoverflow.com/a/8429311/58107

Models

	
class two_factor.models.PhoneDevice(*args, **kwargs)

	Model with phone number and token seed linked to a user.

	
class django_otp.plugins.otp_static.models.StaticDevice(*args, **kwargs)

	A static Device simply consists of random
tokens shared by the database and the user. These are frequently used as
emergency tokens in case a user’s normal device is lost or unavailable.
They can be consumed in any order; each token will be removed from the
database as soon as it is used.

This model has no fields of its own, but serves as a container for
StaticToken objects.

	
token_set

	The RelatedManager for our tokens.

	
class django_otp.plugins.otp_static.models.StaticToken(*args, **kwargs)

	A single token belonging to a StaticDevice.

	
device

	ForeignKey: A foreign key to StaticDevice.

	
token

	CharField: A random string up to 16 characters.

	
class django_otp.plugins.otp_totp.models.TOTPDevice(*args, **kwargs)

	A generic TOTP Device. The model fields mostly
correspond to the arguments to django_otp.oath.totp(). They all have
sensible defaults, including the key, which is randomly generated.

	
key

	CharField: A hex-encoded secret key of up to 40 bytes. (Default: 20
random bytes)

	
step

	PositiveSmallIntegerField: The time step in seconds. (Default: 30)

	
t0

	BigIntegerField: The Unix time at which to begin counting steps.
(Default: 0)

	
digits

	PositiveSmallIntegerField: The number of digits to expect in a token
(6 or 8). (Default: 6)

	
tolerance

	PositiveSmallIntegerField: The number of time steps in the past or
future to allow. For example, if this is 1, we’ll accept any of three
tokens: the current one, the previous one, and the next one. (Default:
1)

	
drift

	SmallIntegerField: The number of time steps the prover is known to
deviate from our clock. If OTP_TOTP_SYNC is True, we’ll
update this any time we match a token that is not the current one.
(Default: 0)

	
last_t

	BigIntegerField: The time step of the last verified token. To avoid
verifying the same token twice, this will be updated on each successful
verification. Only tokens at a higher time step will be verified
subsequently. (Default: -1)

Middleware

	
class django_otp.middleware.OTPMiddleware(get_response=None)

	This must be installed after
AuthenticationMiddleware and
performs an analagous function. Just as AuthenticationMiddleware populates
request.user based on session data, OTPMiddleware populates
request.user.otp_device to the Device
object that has verified the user, or None if the user has not been
verified. As a convenience, this also installs user.is_verified(),
which returns True if user.otp_device is not None.

Signals

	
two_factor.signals.user_verified

	Sent when a user is verified against a OTP device. Provides the following
arguments:

	sender

	The class sending the signal ('two_factor.views.core').

	user

	The user that was verified.

	device

	The OTP device that was used.

	request

	The HttpRequest in which the user was verified.

Template Tags

	
two_factor.templatetags.two_factor.device_action(device)

	Generates an actionable text for a PhoneDevice.

Examples:

	Send text message to +31 * ******58

	Call number +31 * ******58

	
two_factor.templatetags.two_factor.format_phone_number(number)

	Formats a phone number in international notation.
:param number: str or phonenumber object
:return: str

	
two_factor.templatetags.two_factor.mask_phone_number(number)

	Masks a phone number, only first 3 and last 2 digits visible.

Examples:

	+31 * ******58

	Parameters:	number – str or phonenumber object

	Returns:	str

Views

	
class two_factor.views.LoginView(**kwargs)

	View for handling the login process, including OTP verification.

The login process is composed like a wizard. The first step asks for the
user’s credentials. If the credentials are correct, the wizard proceeds to
the OTP verification step. If the user has a default OTP device configured,
that device is asked to generate a token (send sms / call phone) and the
user is asked to provide the generated token. The backup devices are also
listed, allowing the user to select a backup device for verification.

	
class two_factor.views.SetupView(**kwargs)

	View for handling OTP setup using a wizard.

The first step of the wizard shows an introduction text, explaining how OTP
works and why it should be enabled. The user has to select the verification
method (generator / call / sms) in the second step. Depending on the method
selected, the third step configures the device. For the generator method, a
QR code is shown which can be scanned using a mobile phone app and the user
is asked to provide a generated token. For call and sms methods, the user
provides the phone number which is then validated in the final step.

	
class two_factor.views.SetupCompleteView(**kwargs)

	View congratulation the user when OTP setup has completed.

	
class two_factor.views.BackupTokensView(**kwargs)

	View for listing and generating backup tokens.

A user can generate a number of static backup tokens. When the user loses
its phone, these backup tokens can be used for verification. These backup
tokens should be stored in a safe location; either in a safe or underneath
a pillow ;-).

	
class two_factor.views.PhoneSetupView(**kwargs)

	View for configuring a phone number for receiving tokens.

A user can have multiple backup PhoneDevice
for receiving OTP tokens. If the primary phone number is not available, as
the battery might have drained or the phone is lost, these backup phone
numbers can be used for verification.

	
class two_factor.views.PhoneDeleteView(**kwargs)

	View for removing a phone number used for verification.

	
class two_factor.views.ProfileView(**kwargs)

	View used by users for managing two-factor configuration.

This view shows whether two-factor has been configured for the user’s
account. If two-factor is enabled, it also lists the primary verification
method and backup verification methods.

	
class two_factor.views.DisableView(**kwargs)

	View for disabling two-factor for a user’s account.

View Mixins

	
class two_factor.views.mixins.OTPRequiredMixin

	View mixin which verifies that the user logged in using OTP.

Note

This mixin should be the left-most base class.

	
get_login_url()

	Returns login url to redirect to.

	
get_verification_url()

	Returns verification url to redirect to.

	
login_url = None

	If raise_anonymous is set to False, this defines where the user
will be redirected to. Defaults to two_factor:login.

	
raise_anonymous = False

	Whether to raise PermissionDenied if the user isn’t logged in.

	
raise_unverified = False

	Whether to raise PermissionDenied if the user isn’t verified.

	
redirect_field_name = 'next'

	URL query name to use for providing the destination URL.

	
verification_url = None

	If raise_unverified is set to False, this defines where the user
will be redirected to. If set to None, an explanation will be shown to
the user on why access was denied.

Release Notes

1.6.2

	Fix: Twilio client 6.0 usage (#211)

	Updated translation: Russian

1.6.1

	Support Twilio client 6.0 (#203)

	Fix: Fixed redirect_to after successful login (#204)

	Updated translation: Norwegian Bokmål

1.6.0

	New: Support for Django 1.11 (#188).

	Dropped Django 1.9 support.

	Fix: Allow setting LOGIN_REDIRECT_URL to a URL (#192).

	Fix: DisableView should also take success_url parameter (#187).

1.5.0

	New: Django 1.10’s MIDDLEWARE support.

	New: Allow success_url overrides from urls.py.

	New: Autofocus token input during authentication.

	New translations: Polish, Italian, Hungarian, Finnish and Danish.

	Renamed redirect_url properties to success_url to be consistent with Django.

	Dropped Python 3.2 and 3.3 support.

	Fix: Allow Firefox users to enter backup tokens (#177).

	Fix: Allow multiple requests for QR code (#99).

	Fix: Don’t add phone number without gateway (#92).

	Fix: Redirect to 2FA profile page after removing a phone (#159).

1.4.0

	New: Support for Django 1.10 (#157).

	Fix: Enable autodoc builds in documentation (#164).

	Fix: Support named urls in LOGIN_URL, LOGIN_REDIRECT_URL and
LOGOUT_URL (#153).

1.3.1

	Fix: KeyError when trying to login (#102).

	Fix: Migration fails with custom user model without username field.

	Fix: Added missing migrations.

	Fix: Spurious migrations on Python 3.

	Require django-otp 0.3.4 and above for better Python 3 compatibility.

1.3.0

	New feature: Added support for Django 1.9.

	New feature: Use phonenumbers library to validate phone number format.

	New feature: Use django-phonenumber-field for storing phone number in E.164 format.

	Use AppConfig for patching admin.

	Reduced number of tox test environments.

	Removed support for Django 1.7 and below.

	Fix: Catch gateway errors.

	Fix: Use raw_id_fields on admin site form.

	Fix: Skip test that hits bug in Python 2.7.10.

	Fix: Import changed in django-otp 0.3.?.

1.2.2

	Allow django-otp 0.3.x as well as 0.2.x.

1.2.1

	Fix: Resolved an issue with django_otp 0.3.2 and higher.

1.2.0

	Fix: Issue with migrations on Py3 (#87).

	Fix: Fixed failing migration on Django 1.7.0 (#83).

	Fix: Issue with pip unable to install package.

	Dropped support for Django 1.5 and 1.6.

	Added support for Django 1.8.

1.1.1

	Fix: Resolved a warning from Django 1.7 migrations (#80).

1.1.0

	New feature: Django 1.7 migrations.

	New feature: Optional support for 8 digit codes (#79).

	Renamed management commands (#77).

	Fix: If the login view state was reset, an exception was raised (#65).

	Fix: Off-screen buttons in default template were visibile on screens with
high resolution (#76).

1.0.0

	New translations: German, Spanish, French, Swedish and Portuguese (Brazil).

	New feature: Support for Django 1.7.

	New feature: Management commands.

	New feature: Support for YubiKeys.

	New feature: Support for custom user model (Django 1.5+) (#39).

	Auto-login after completing setup (#44).

	Advise to add backup devices after setup (#49).

	Documentation about securing admindocs (#66).

	Mitigate voicemail hack (#54).

	Fire signal when user is verified.

	Fix: Cannot generate QR code for unicode characters (#69).

	Fix: Secure sensitive post parameters (#62).

	Fix: Login wizard should handle changing passwords (#63).

	Fix: Always cast the token to an int before verification (#60).

	Fix: Add URL encoding to otpauth URL (#52).

	Fix: Use two_factor:login instead of LOGIN_URL (#55).

0.5.0

	#32 – Make the auth method label capitalization more consistent.

	#31 – Set an error code for phone_number_validator.

	#30 – Don’t transmit token seed through GET parameters.

	#29 – Generate QR codes locally.

	#27 – South migrations to support custom user model.

0.4.0

	Fixed #26 – Twilio libraries are required.

0.3.1

	Fixed #25 – Back-up tokens cannot be used for login.

0.3.0

	#18 – Optionally enforce OTP for admin views.

	New translation: Simplified Chinese.

0.2.3

	Two new translations: Hebrew and Arabic.

0.2.2

	Allow changing Twilio call language.

0.2.1

	Allow overriding instructions in the template.

	Allow customization of the redirect query parameter.

	Faster backup token generating.

0.2.0

This is a major upgrade, as the package has been rewritten completely. Upgrade
to this version with care and make backups of your database before running the
South migrations. See installation instructions for installing the new version;
update your template customizations and run the database migrations.

 Python Module Index

 d |
 t

 		 	

 		
 d	

 	[image: -]
 	
 django_otp	

 	
 	
 django_otp.decorators	

 		 	

 		
 t	

 	[image: -]
 	
 two_factor	

 	
 	
 two_factor.signals	

 	
 	
 two_factor.templatetags.two_factor	

 	
 	
 two_factor.views.mixins	

 	
 	
 two_factor.views.utils	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	AdminSiteOTPRequired (class in two_factor.admin)

 	
 	AdminSiteOTPRequiredMixin (class in two_factor.admin)

B

 	
 	BackupTokensView (class in two_factor.views)

C

 	
 	class_view_decorator() (in module two_factor.views.utils)

 	
 	Command (class in two_factor.management.commands.two_factor_disable)

 	(class in two_factor.management.commands.two_factor_status)

D

 	
 	device (two_factor.views.utils.StaticToken attribute)

 	device_action() (in module two_factor.templatetags.two_factor)

 	digits (two_factor.views.utils.TOTPDevice attribute)

 	
 	DisableView (class in two_factor.views)

 	django_otp.decorators (module)

 	drift (two_factor.views.utils.TOTPDevice attribute)

F

 	
 	Fake (class in two_factor.gateways.fake)

 	
 	format_phone_number() (in module two_factor.templatetags.two_factor)

G

 	
 	get_login_url() (two_factor.views.mixins.OTPRequiredMixin method)

 	
 	get_verification_url() (two_factor.views.mixins.OTPRequiredMixin method)

K

 	
 	key (two_factor.views.utils.TOTPDevice attribute)

L

 	
 	last_t (two_factor.views.utils.TOTPDevice attribute)

 	
 	login_url (two_factor.views.mixins.OTPRequiredMixin attribute)

 	LoginView (class in two_factor.views)

M

 	
 	mask_phone_number() (in module two_factor.templatetags.two_factor)

O

 	
 	otp_required() (in module django_otp.decorators)

 	
 	OTPMiddleware (class in django_otp.middleware)

 	OTPRequiredMixin (class in two_factor.views.mixins)

P

 	
 	PhoneDeleteView (class in two_factor.views)

 	PhoneDevice (class in two_factor.models)

 	
 	PhoneSetupView (class in two_factor.views)

 	ProfileView (class in two_factor.views)

R

 	
 	raise_anonymous (two_factor.views.mixins.OTPRequiredMixin attribute)

 	
 	raise_unverified (two_factor.views.mixins.OTPRequiredMixin attribute)

 	redirect_field_name (two_factor.views.mixins.OTPRequiredMixin attribute)

S

 	
 	SetupCompleteView (class in two_factor.views)

 	SetupView (class in two_factor.views)

 	
 	StaticDevice (class in django_otp.plugins.otp_static.models)

 	StaticToken (class in django_otp.plugins.otp_static.models)

 	step (two_factor.views.utils.TOTPDevice attribute)

T

 	
 	t0 (two_factor.views.utils.TOTPDevice attribute)

 	token (two_factor.views.utils.StaticToken attribute)

 	token_set (two_factor.views.utils.StaticDevice attribute)

 	tolerance (two_factor.views.utils.TOTPDevice attribute)

 	TOTPDevice (class in django_otp.plugins.otp_totp.models)

 	
 	Twilio (class in two_factor.gateways.twilio.gateway)

 	two_factor.signals (module)

 	two_factor.templatetags.two_factor (module)

 	two_factor.views.mixins (module)

 	two_factor.views.utils (module)

U

 	
 	user_verified (in module two_factor.signals)

V

 	
 	verification_url (two_factor.views.mixins.OTPRequiredMixin attribute)

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Django Two-Factor Authentication Documentation

 		Requirements

 		Django

 		Python

 		django-otp

 		django-formtools

 		Installation

 		Setup

 		Yubikey Setup

 		Configuration

 		General Settings

 		Twilio Gateway

 		Fake Gateway

 		Implementing

 		Limiting access to certain views

 		Decorator

 		Mixin

 		Custom

 		Enforcing two-factor

 		Admin Site

 		Signals

 		Management Commands

 		Status

 		Disable

 		Class Reference

 		Admin Site

 		Decorators

 		Models

 		Middleware

 		Signals

 		Template Tags

 		Views

 		View Mixins

 		Release Notes

 		1.6.2

 		1.6.1

 		1.6.0

 		1.5.0

 		1.4.0

 		1.3.1

 		1.3.0

 		1.2.2

 		1.2.1

 		1.2.0

 		1.1.1

 		1.1.0

 		1.0.0

 		0.5.0

 		0.4.0

 		0.3.1

 		0.3.0

 		0.2.3

 		0.2.2

 		0.2.1

 		0.2.0

_static/up-pressed.png

_static/comment-bright.png

