

Django Two-Factor Authentication Documentation

Complete Two-Factor Authentication for Django. Built on top of the one-time
password framework django-otp [https://pypi.python.org/pypi/django-otp] and Django’s built-in authentication framework
django.contrib.auth for providing the easiest integration into most Django
projects. Inspired by the user experience of Google’s Two-Step Authentication,
allowing users to authenticate through call, text messages (SMS) or by using a
token generator app like Google Authenticator.

Contents:

	Requirements
	Django

	Python

	django-otp

	Installation
	Yubikey

	Configuration
	General Settings

	Twilio Gateway

	Fake Gateway

	Implementing
	Limiting access to certain views

	Enforcing two-factor

	Admin Site

	Signals

	Management Commands
	Status

	Disable

	Class Reference
	Admin Site

	Decorators

	Models

	Middleware

	Signals

	Template Tags

	Views

	View Mixins

	Release Notes
	1.1.1

	1.1.0

	1.0.0

	0.5.0

	0.4.0

	0.3.1

	0.3.0

	0.2.3

	0.2.2

	0.2.1

	0.2.0

I would love to hear your feedback on this application. If you run into
problems, please file an issue on GitHub, or contribute to the project by
forking the repository and sending some pull requests.

This application is currently translated into English, Dutch, Hebrew, Arabic,
German, Chinese and Spanish. Please contribute your own language using
Transifex [https://www.transifex.com/projects/p/django-two-factor-auth/].

Indices and tables

	Index

	Module Index

	Search Page

Requirements

Django

Django version 1.4 and above are supported. The minimal version of Django is
1.4.2 as it includes the six compatibility layer used for transitioning to
Python 3.

Python

The following Python versions are supported: 2.6, 2.7, 3.2, 3.3 and 3.4. As
support for older Django versions is dropped, the minimum version might be
raised. See also What Python version can I use with Django? [https://docs.djangoproject.com/en/dev/faq/install/#what-python-version-can-i-use-with-django].

django-otp

This project is used for generating one-time passwords. Version 0.2 and above
are supported.

Installation

You can install from PyPI_ using pip to install django-two-factor-auth
and its dependencies:

``pip install django-two-factor-auth``

Add the following apps to the INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'django_otp',
 'django_otp.plugins.otp_static',
 'django_otp.plugins.otp_totp',
 'two_factor',
)

Add the django-otp middleware to your MIDDLEWARE_CLASSES. Make sure
it comes after AuthenticationMiddleware:

MIDDLEWARE_CLASSES = (
 ...
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django_otp.middleware.OTPMiddleware',
 ...
)

Point to the new login pages in your settings:

from django.core.urlresolvers import reverse_lazy

LOGIN_URL = reverse_lazy('two_factor:login')

this one is optional
LOGIN_REDIRECT_URL = reverse_lazy('two_factor:profile')

Add the routes to your url configuration:

urlpatterns = patterns(
 '',
 url(r'', include('two_factor.urls', 'two_factor')),
 ...
)

Warning

Be sure to remove any other login routes, otherwise the two-factor
authentication might be circumvented. The admin interface should be
automatically patched to use the new login method.

Yubikey

In order to support Yubikeys, you have to install a plugin for django-otp:

pip install django-otp-yubikey

Add the following app to the INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'otp_yubikey',
)

This plugin also requires adding a validation service, through wich YubiKeys
will be verified. Normally, you’d use the YubiCloud for this. In the Django
admin, navigate to YubiKey validation services and add an item. Django
Two-Factor Authentication will identify the validation service with the
name default. The other fields can be left empty, but you might want to
consider requesting an API ID along with API key and using SSL for
communicating with YubiCloud.

You could also do this using this snippet:

manage.py shell
>>> from otp_yubikey.models import ValidationService
>>> ValidationService.objects.create(name='default', use_ssl=True,
... param_sl='', param_timeout='')
<ValidationService: default>

Configuration

General Settings

	TWO_FACTOR_PATCH_ADMIN (default: True)

	Whether the Django admin is patched to use the default login view.

Warning

The admin currently does not enforce one-time passwords being set for
admin users.

	TWO_FACTOR_CALL_GATEWAY (default: None)

	Which gateway to use for making phone calls. Should be set to a module or
object providing a make_call method. Currently two gateways are bundled:

	two_factor.gateways.twilio.gateway.Twilio for making real phone calls using
Twilio [http://www.twilio.com/].

	two_factor.gateways.fake.Fake for development, recording tokens to the
default logger.

	TWO_FACTOR_SMS_GATEWAY (default: None)

	Which gateway to use for sending text messages. Should be set to a module or
object providing a send_sms method. Currently two gateways are bundled:

	two_factor.gateways.twilio.gateway.Twilio for sending real text messages using
Twilio [http://www.twilio.com/].

	two_factor.gateways.fake.Fake for development, recording tokens to the
default logger.

	LOGIN_URL

	Should point to the login view provided by this application. This login view
handles password authentication followed by a one-time password exchange if
enabled for that account.

See also LOGIN_URL [https://docs.djangoproject.com/en/dev/ref/settings/#login-url].

	LOGIN_REDIRECT_URL

	This application provides a basic page for managing one’s account. This view
is entirely optional and could be implemented in a custom view.

See also LOGIN_REDIRECT_URL [https://docs.djangoproject.com/en/dev/ref/settings/#login-redirect-url].

	TWO_FACTOR_QR_FACTORY

	The default generator for the QR code images is set to SVG. This
does not require any further dependencies, however it does not work
on IE8 and below. If you have PIL, Pillow or pyimaging installed
you may wish to use PNG images instead.

	qrcode.image.pil.PilImage may be used for PIL/Pillow

	qrcode.image.pure.PymagingImage may be used for pyimaging

For more QR factories that are available see python-qrcode [https://pypi.python.org/pypi/qrcode].

	TWO_FACTOR_TOTP_DIGITS (default: 6)

	The number of digits to use for TOTP tokens, can be set to 6 or 8. This
setting will be used for tokens delivered by phone call or text message and
newly configured token generators. Existing token generator devices will not
be affected.

Warning

The Google Authenticator app does not support 8 digit codes (see
the upstream ticket [https://code.google.com/p/google-authenticator/issues/detail?id=327]). Don’t set this option to 8 unless all of your
users use a 8 digit compatible token generator app.

Twilio Gateway

To use the Twilio gateway, you need first to install the Twilio client [https://pypi.python.org/pypi/twilio]:

pip install twilio

Next, you also need to include the Twilio urlpatterns. As these urlpatterns are
all defined using a single Django namespace, these should be joined with the
base urlpatterns, like so:

urls.py
from two_factor.urls import urlpatterns as tf_urls
from two_factor.gateways.twilio.urls import urlpatterns as tf_twilio_urls

urlpatterns = patterns('',
 url(r'', include(tf_urls + tf_twilio_urls, 'two_factor')),
)

Fake Gateway

Implementing

Users can opt-in to enhanced security by enabling two-factor authentication.
There is currently no enforcement of a policy, it is entirely optional.
However, you could override this behaviour to enforce a custom policy.

Limiting access to certain views

For increased security views can be limited to two-factor-enabled users. This
allows you to secure certain parts of the website. Doing so requires a
decorator, class mixin or a custom inspection of a user’s session.

Decorator

You can use django-otp’s built-in otp_required()
decorator to limit access to two-factor-enabled users:

from django_otp.decorators import otp_required

@otp_required
def my_view(request):
 pass

Mixin

The mixin OTPRequiredMixin can be used to
limit access to class-based views (CBVs):

class ExampleSecretView(OTPRequiredMixin, TemplateView):
 template_name = 'secret.html'

Custom

The method is_verified() is added through django-otp’s
OTPMiddleware which can be used to check if the
user was logged in using two-factor authentication:

def my_view(request):
 if request.user.is_verified():
 # user logged in using two-factor
 pass
 else:
 # user not logged in using two-factor
 pass

Enforcing two-factor

Forcing users to enable two-factor authentication is not implemented. However,
you could create your own custom policy.

Admin Site

By default the admin login is patched to use the login views provided by this
application. Patching the admin is required as users would otherwise be able
to circumvent OTP verification. See also TWO_FACTOR_PATCH_ADMIN.
Be aware that certain packages include their custom login views, for example
django.contrib.admindocs. When using said packages, OTP verification
can be circumvented. Thus however the normal admin login view is patched,
OTP might not always be enforced on the admin views. See the next paragraph
on how to do this.

In order to only allow verified users (enforce OTP) to access the admin pages,
you have to use a custom admin site. You can either use
AdminSiteOTPRequired or
AdminSiteOTPRequiredMixin. See also the Django
documentation on Hooking AdminSite instances into your URLconf [https://docs.djangoproject.com/en/dev/ref/contrib/admin/#hooking-adminsite-instances-into-your-urlconf].

Signals

When a user was successfully verified using a OTP, the signal
user_verified is sent. The signal includes the
user, the device used and the request itself. You can use this signal for
example to warn a user when one of his backup tokens was used:

from django.contrib.sites.models import get_current_site
from django.dispatch import receiver
from two_factor.signals import user_verified

@receiver(user_verified)
def test_receiver(request, user, device, **kwargs):
 current_site = get_current_site(request)
 if device.name == 'backup':
 message = 'Hi %(username)s,\n\n'\
 'You\'ve verified yourself using a backup device '\
 'on %(site_name)s. If this wasn\'t you, your '\
 'account might have been compromised. You need to '\
 'change your password at once, check your backup '\
 'phone numbers and generate new backup tokens.'\
 % {'username': user.get_username(),
 'site_name': current_site.name}
 user.email_user(subject='Backup token used', message=message)

Management Commands

Status

Disable

Class Reference

Admin Site

Decorators

	
django_otp.decorators.otp_required(view=None, redirect_field_name='next', login_url=None, if_configured=False)

	Similar to login_required(), but
requires the user to be verified. By default, this redirects users
to :setting:`OTP_LOGIN_URL`.

	Parameters

	if_configured (bool) – If True, an authenticated user with no confirmed
OTP devices will be allowed. Default is False.

Models

Middleware

Signals

	
two_factor.signals.user_verified

	Sent when a user is verified against a OTP device. Provides the following
arguments:

	sender

	The class sending the signal ('two_factor.views.core').

	user

	The user that was verified.

	device

	The OTP device that was used.

	request

	The HttpRequest in which the user was verified.

Template Tags

Views

View Mixins

Release Notes

1.1.1

	Fix: Resolved a warning from Django 1.7 migrations (#80).

1.1.0

	New feature: Django 1.7 migrations.

	New feature: Optional support for 8 digit codes (#79).

	Renamed management commands (#77).

	Fix: If the login view state was reset, an exception was raised (#65).

	Fix: Off-screen buttons in default template were visibile on screens with
high resolution (#76).

1.0.0

	New translations: German, Spanish, French, Swedish and Portuguese (Brazil).

	New feature: Support for Django 1.7.

	New feature: Management commands.

	New feature: Support for YubiKeys.

	New feature: Support for custom user model (Django 1.5+) (#39).

	Auto-login after completing setup (#44).

	Advise to add backup devices after setup (#49).

	Documentation about securing admindocs (#66).

	Mitigate voicemail hack (#54).

	Fire signal when user is verified.

	Fix: Cannot generate QR code for unicode characters (#69).

	Fix: Secure sensitive post parameters (#62).

	Fix: Login wizard should handle changing passwords (#63).

	Fix: Always cast the token to an int before verification (#60).

	Fix: Add URL encoding to otpauth URL (#52).

	Fix: Use two_factor:login instead of LOGIN_URL (#55).

0.5.0

	#32 – Make the auth method label capitalization more consistent.

	#31 – Set an error code for phone_number_validator.

	#30 – Don’t transmit token seed through GET parameters.

	#29 – Generate QR codes locally.

	#27 – South migrations to support custom user model.

0.4.0

	Fixed #26 – Twilio libraries are required.

0.3.1

	Fixed #25 – Back-up tokens cannot be used for login.

0.3.0

	#18 – Optionally enforce OTP for admin views.

	New translation: Simplified Chinese.

0.2.3

	Two new translations: Hebrew and Arabic.

0.2.2

	Allow changing Twilio call language.

0.2.1

	Allow overriding instructions in the template.

	Allow customization of the redirect query parameter.

	Faster backup token generating.

0.2.0

This is a major upgrade, as the package has been rewritten completely. Upgrade
to this version with care and make backups of your database before running the
South migrations. See installation instructions for installing the new version;
update your template customizations and run the database migrations.

 Python Module Index

 d |
 t

 		 	

 		
 d	

 	[image: -]
 	
 django_otp	

 	
 	
 django_otp.decorators	

 		 	

 		
 t	

 	[image: -]
 	
 two_factor	

 	
 	
 two_factor.signals	

Index

 D
 | O
 | T
 | U

D

 	
 	django_otp.decorators (module)

O

 	
 	otp_required() (in module django_otp.decorators)

T

 	
 	two_factor.signals (module)

U

 	
 	user_verified (in module two_factor.signals)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Django Two-Factor Authentication Documentation

 		
 Requirements

 		
 Django

 		
 Python

 		
 django-otp

 		
 Installation

 		
 Yubikey

 		
 Configuration

 		
 General Settings

 		
 Twilio Gateway

 		
 Fake Gateway

 		
 Implementing

 		
 Limiting access to certain views

 		
 Decorator

 		
 Mixin

 		
 Custom

 		
 Enforcing two-factor

 		
 Admin Site

 		
 Signals

 		
 Management Commands

 		
 Status

 		
 Disable

 		
 Class Reference

 		
 Admin Site

 		
 Decorators

 		
 Models

 		
 Middleware

 		
 Signals

 		
 Template Tags

 		
 Views

 		
 View Mixins

 		
 Release Notes

 		
 1.1.1

 		
 1.1.0

 		
 1.0.0

 		
 0.5.0

 		
 0.4.0

 		
 0.3.1

 		
 0.3.0

 		
 0.2.3

 		
 0.2.2

 		
 0.2.1

 		
 0.2.0

_static/up.png

_static/up-pressed.png

