
Django Two-Factor Authentication
Documentation

Release 1.12.1

Bouke Haarsma

Jul 08, 2020

Contents

1 Requirements 3
1.1 Django . 3
1.2 Python . 3
1.3 django-otp . 3
1.4 django-formtools . 3

2 Installation 5
2.1 Setup . 5
2.2 Yubikey Setup . 6

3 Configuration 7
3.1 General Settings . 7
3.2 Twilio Gateway . 8
3.3 Fake Gateway . 9

4 Implementing 11
4.1 Limiting access to certain views . 11
4.2 Enforcing two-factor . 12
4.3 Admin Site . 12
4.4 Signals . 12

5 Management Commands 15
5.1 Status . 15
5.2 Disable . 15

6 Class Reference 17
6.1 Admin Site . 17
6.2 Decorators . 17
6.3 Models . 18
6.4 Middleware . 18
6.5 Signals . 19
6.6 Template Tags . 19
6.7 Views . 19
6.8 View Mixins . 20

7 Indices and tables 23

i

Python Module Index 25

Index 27

ii

Django Two-Factor Authentication Documentation, Release 1.12.1

Complete Two-Factor Authentication for Django. Built on top of the one-time password framework django-otp and
Django’s built-in authentication framework django.contrib.auth for providing the easiest integration into most
Django projects. Inspired by the user experience of Google’s Two-Step Authentication, allowing users to authenticate
through call, text messages (SMS) or by using a token generator app like Google Authenticator.

Contents:

Contents 1

https://pypi.python.org/pypi/django-otp

Django Two-Factor Authentication Documentation, Release 1.12.1

2 Contents

CHAPTER 1

Requirements

1.1 Django

Modern Django versions are supported. Currently this list includes Django 1.11, 2.2, and 3.0.

1.2 Python

The following Python versions are supported: 3.5, 3.6, 3.7 and 3.8 with a limit to what Django itself supports. As
support for older Django versions is dropped, the minimum version might be raised. See also What Python version
can I use with Django?.

1.3 django-otp

This project is used for generating one-time passwords. Version 0.6.x and above are supported.

1.4 django-formtools

Formerly known as django.contrib.formtools, it has been separated from Django 1.8 into a new package.
Version 1.0 is supported.

3

https://docs.djangoproject.com/en/dev/faq/install/#what-python-version-can-i-use-with-django
https://docs.djangoproject.com/en/dev/faq/install/#what-python-version-can-i-use-with-django

Django Two-Factor Authentication Documentation, Release 1.12.1

4 Chapter 1. Requirements

CHAPTER 2

Installation

You can install from PyPI using pip to install django-two-factor-auth and its dependencies:

$ pip install django-two-factor-auth

This project uses django-phonenumber-field which requires either phonenumbers or
phonenumberslite to be installed. Either manually install a supported version using pip or install
django-two-factor-auth with the extras specified as in the below examples:

$ pip install django-two-factor-auth[phonenumbers]

OR

$ pip install django-two-factor-auth[phonenumberslite]

2.1 Setup

Add the following apps to the INSTALLED_APPS:

INSTALLED_APPS = (
...
'django_otp',
'django_otp.plugins.otp_static',
'django_otp.plugins.otp_totp',
'two_factor',

)

Add the django-otp middleware to your MIDDLEWARE. Make sure it comes after
AuthenticationMiddleware:

MIDDLEWARE = (
...

(continues on next page)

5

https://pypi.python.org/pypi/django-two-factor-auth

Django Two-Factor Authentication Documentation, Release 1.12.1

(continued from previous page)

'django.contrib.auth.middleware.AuthenticationMiddleware',
'django_otp.middleware.OTPMiddleware',
...

)

Point to the new login pages in your settings.py:

LOGIN_URL = 'two_factor:login'

this one is optional
LOGIN_REDIRECT_URL = 'two_factor:profile'

Add the routes to your project url configuration:

from two_factor.urls import urlpatterns as tf_urls
urlpatterns = [

url(r'', include(tf_urls)),
...

]

Warning: Be sure to remove any other login routes, otherwise the two-factor authentication might be circum-
vented. The admin interface should be automatically patched to use the new login method.

2.2 Yubikey Setup

In order to support Yubikeys, you have to install a plugin for django-otp:

$ pip install django-otp-yubikey

Add the following app to the INSTALLED_APPS:

INSTALLED_APPS = (
...
'otp_yubikey',

)

This plugin also requires adding a validation service, through which YubiKeys will be verified. Normally, you’d
use the YubiCloud for this. In the Django admin, navigate to YubiKey validation services and add an
item. Django Two-Factor Authentication will identify the validation service with the name default. The other
fields can be left empty, but you might want to consider requesting an API ID along with API key and using SSL for
communicating with YubiCloud.

You could also do this using Django’s manage.py shell:

$ python manage.py shell

>>> from otp_yubikey.models import ValidationService
>>> ValidationService.objects.create(
... name='default', use_ssl=True, param_sl='', param_timeout=''
...)
<ValidationService: default>

6 Chapter 2. Installation

https://www.yubico.com/products/yubikey-hardware/

CHAPTER 3

Configuration

3.1 General Settings

TWO_FACTOR_PATCH_ADMIN (default: True) Whether the Django admin is patched to use the default login view.

Warning: The admin currently does not enforce one-time passwords being set for admin users.

TWO_FACTOR_CALL_GATEWAY (default: None) Which gateway to use for making phone calls. Should be set to
a module or object providing a make_call method. Currently two gateways are bundled:

• 'two_factor.gateways.twilio.gateway.Twilio' for making real phone calls using Twilio.

• 'two_factor.gateways.fake.Fake' for development, recording tokens to the default logger.

TWO_FACTOR_SMS_GATEWAY (default: None) Which gateway to use for sending text messages. Should be set to
a module or object providing a send_sms method. Currently two gateways are bundled:

• 'two_factor.gateways.twilio.gateway.Twilio' for sending real text messages using
Twilio.

• 'two_factor.gateways.fake.Fake' for development, recording tokens to the default logger.

LOGIN_URL Should point to the login view provided by this application as described in setup. This login view
handles password authentication followed by a one-time password exchange if enabled for that account. This
can be a URL path or URL name as defined in the Django documentation.

See also LOGIN_URL.

LOGIN_REDIRECT_URL This application provides a basic page for managing one’s account. This view is entirely
optional and could be implemented in a custom view. This can be a URL path or URL name as defined in the
Django documentation.

See also LOGIN_REDIRECT_URL.

7

http://www.twilio.com/
http://www.twilio.com/
https://docs.djangoproject.com/en/dev/ref/settings/#login-url
https://docs.djangoproject.com/en/dev/ref/settings/#login-redirect-url

Django Two-Factor Authentication Documentation, Release 1.12.1

LOGOUT_REDIRECT_URL Should point to a view that the user is redirected to after loging out. It was added in
Django 1.10, and also adapted by this application. This can be a URL path or URL name as defined in the
Django documentation.

See also LOGOUT_REDIRECT_URL.

TWO_FACTOR_QR_FACTORY The default generator for the QR code images is set to SVG. This does not require
any further dependencies, however it does not work on IE8 and below. If you have PIL, Pillow or pyimaging
installed you may wish to use PNG images instead.

• 'qrcode.image.pil.PilImage' may be used for PIL/Pillow

• 'qrcode.image.pure.PymagingImage' may be used for pyimaging

For more QR factories that are available see python-qrcode.

TWO_FACTOR_TOTP_DIGITS (default: 6) The number of digits to use for TOTP tokens, can be set to 6 or 8. This
setting will be used for tokens delivered by phone call or text message and newly configured token generators.
Existing token generator devices will not be affected.

Warning: The Google Authenticator app does not support 8 digit codes (see the upstream ticket). Don’t
set this option to 8 unless all of your users use a 8 digit compatible token generator app.

TWO_FACTOR_LOGIN_TIMEOUT (default 600) The number of seconds between a user successfully passing the
“authentication” step (usually by entering a valid username and password) and them having to restart the login
flow and re-authenticate. This ensures that users can’t sit indefinately in a state of having entered their password
successfully but not having passed two factor authentication. Set to 0 to disable.

PHONENUMBER_DEFAULT_REGION (default: None) The default region for parsing phone numbers. If your appli-
cation’s primary audience is a certain country, setting the region to that country allows entering phone numbers
without that country’s country code.

3.2 Twilio Gateway

To use the Twilio gateway, you need first to install the Twilio client:

$ pip install twilio

Next, add additional urls to your config:

urls.py
from two_factor.gateways.twilio.urls import urlpatterns as tf_twilio_urls
urlpatterns = [

url(r'', include(tf_twilio_urls)),
...

]

Additionally, you need to enable the ThreadLocals middleware:

MIDDLEWARE = (
...

Always include for two-factor auth
'django_otp.middleware.OTPMiddleware',

(continues on next page)

8 Chapter 3. Configuration

https://docs.djangoproject.com/en/dev/ref/settings/#logout-redirect-url
https://pypi.python.org/pypi/qrcode
https://code.google.com/p/google-authenticator/issues/detail?id=327
https://pypi.python.org/pypi/twilio

Django Two-Factor Authentication Documentation, Release 1.12.1

(continued from previous page)

Include for twilio gateway
'two_factor.middleware.threadlocals.ThreadLocals',

)

class two_factor.gateways.twilio.gateway.Twilio
Gateway for sending text messages and making phone calls using Twilio.

All you need is your Twilio Account SID and Token, as shown in your Twilio account dashboard.

TWILIO_ACCOUNT_SID Should be set to your account’s SID.

TWILIO_AUTH_TOKEN Should be set to your account’s authorization token.

TWILIO_CALLER_ID Should be set to a verified phone number. Twilio differentiates between numbers veri-
fied for making phone calls and sending text messages.

3.3 Fake Gateway

class two_factor.gateways.fake.Fake
Prints the tokens to the logger. You will have to set the message level of the two_factor logger to INFO for
them to appear in the console. Useful for local development. You should configure your logging like this:

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {

'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler',

},
},
'loggers': {

'two_factor': {
'handlers': ['console'],
'level': 'INFO',

}
}

}

3.3. Fake Gateway 9

http://www.twilio.com/
http://www.twilio.com/

Django Two-Factor Authentication Documentation, Release 1.12.1

10 Chapter 3. Configuration

CHAPTER 4

Implementing

Users can opt-in to enhanced security by enabling two-factor authentication. There is currently no enforcement of a
policy, it is entirely optional. However, you could override this behaviour to enforce a custom policy.

4.1 Limiting access to certain views

For increased security views can be limited to two-factor-enabled users. This allows you to secure certain parts of the
website. Doing so requires a decorator, class mixin or a custom inspection of a user’s session.

4.1.1 Decorator

You can use django-otp’s built-in otp_required() decorator to limit access to two-factor-enabled users:

from django_otp.decorators import otp_required

@otp_required
def my_view(request):

pass

4.1.2 Mixin

The mixin OTPRequiredMixin can be used to limit access to class-based views (CBVs):

class ExampleSecretView(OTPRequiredMixin, TemplateView):
template_name = 'secret.html'

11

Django Two-Factor Authentication Documentation, Release 1.12.1

4.1.3 Custom

The method is_verified() is added through django-otp’s OTPMiddleware which can be used to check if the
user was logged in using two-factor authentication:

def my_view(request):
if request.user.is_verified():

user logged in using two-factor
pass

else:
user not logged in using two-factor
pass

4.2 Enforcing two-factor

Forcing users to enable two-factor authentication is not implemented. However, you could create your own custom
policy.

4.3 Admin Site

By default the admin login is patched to use the login views provided by this application. Patching the admin is
required as users would otherwise be able to circumvent OTP verification. See also TWO_FACTOR_PATCH_ADMIN.
Be aware that certain packages include their custom login views, for example django.contrib.admindocs. When using
said packages, OTP verification can be circumvented. Thus however the normal admin login view is patched, OTP
might not always be enforced on the admin views. See the next paragraph on how to do this.

In order to only allow verified users (enforce OTP) to access the admin pages, you have to use a custom admin
site. You can either use AdminSiteOTPRequired or AdminSiteOTPRequiredMixin. See also the Django
documentation on Hooking AdminSite instances into your URLconf.

If you want to enforce two factor authentication in the admin and use the default admin site (e.g. because 3rd party
packages register to django.contrib.admin.site) you can monkey patch the default AdminSite with this.
In your urls.py:

from django.contrib import admin
from two_factor.admin import AdminSiteOTPRequired

admin.site.__class__ = AdminSiteOTPRequired

urlpatterns = [
url(r'^admin/', admin.site.urls),
...

]

4.4 Signals

When a user was successfully verified using a OTP, the signal user_verified is sent. The signal includes the
user, the device used and the request itself. You can use this signal for example to warn a user when one of his backup
tokens was used:

12 Chapter 4. Implementing

https://docs.djangoproject.com/en/dev/ref/contrib/admin/#hooking-adminsite-instances-into-your-urlconf

Django Two-Factor Authentication Documentation, Release 1.12.1

from django.dispatch import receiver
from two_factor.compat import get_current_site
from two_factor.signals import user_verified

@receiver(user_verified)
def test_receiver(request, user, device, **kwargs):

current_site = get_current_site(request)
if device.name == 'backup':

message = 'Hi %(username)s,\n\n'\
'You\'ve verified yourself using a backup device '\
'on %(site_name)s. If this wasn\'t you, your '\
'account might have been compromised. You need to '\
'change your password at once, check your backup '\
'phone numbers and generate new backup tokens.'\
% {'username': user.get_username(),

'site_name': current_site.name}
user.email_user(subject='Backup token used', message=message)

4.4. Signals 13

Django Two-Factor Authentication Documentation, Release 1.12.1

14 Chapter 4. Implementing

CHAPTER 5

Management Commands

5.1 Status

class two_factor.management.commands.two_factor_status.Command(stdout=None,
stderr=None,
no_color=False,
force_color=False)

Command to check two-factor authentication status for certain users.

The command accepts any number of usernames, and will list if OTP is enabled or disabled for those users.

Example usage:

manage.py two_factor_status bouke steve
bouke: enabled
steve: disabled

5.2 Disable

class two_factor.management.commands.two_factor_disable.Command(stdout=None,
stderr=None,
no_color=False,
force_color=False)

Command for disabling two-factor authentication for certain users.

The command accepts any number of usernames, and will remove all OTP devices for those users.

Example usage:

manage.py two_factor_disable bouke steve

15

Django Two-Factor Authentication Documentation, Release 1.12.1

16 Chapter 5. Management Commands

CHAPTER 6

Class Reference

6.1 Admin Site

class two_factor.admin.AdminSiteOTPRequired(name=’admin’)
AdminSite enforcing OTP verified staff users.

class two_factor.admin.AdminSiteOTPRequiredMixin
Mixin for enforcing OTP verified staff users.

Custom admin views should either be wrapped using admin_view() or use has_permission() in order
to secure those views.

6.2 Decorators

django_otp.decorators.otp_required(view=None, redirect_field_name=’next’, login_url=None,
if_configured=False)

Similar to login_required(), but requires the user to be verified. By default, this redirects users to
OTP_LOGIN_URL.

Parameters if_configured (bool) – If True, an authenticated user with no confirmed OTP
devices will be allowed. Default is False.

two_factor.views.utils.class_view_decorator(function_decorator)
Converts a function based decorator into a class based decorator usable on class based Views.

Can’t subclass the View as it breaks inheritance (super in particular), so we monkey-patch instead.

From: http://stackoverflow.com/a/8429311/58107

17

http://stackoverflow.com/a/8429311/58107

Django Two-Factor Authentication Documentation, Release 1.12.1

6.3 Models

class two_factor.models.PhoneDevice(*args, **kwargs)
Model with phone number and token seed linked to a user.

class django_otp.plugins.otp_static.models.StaticDevice(*args, **kwargs)
A static Device simply consists of random tokens shared by the database and the user.

These are frequently used as emergency tokens in case a user’s normal device is lost or unavailable. They can
be consumed in any order; each token will be removed from the database as soon as it is used.

This model has no fields of its own, but serves as a container for StaticToken objects.

token_set
The RelatedManager for our tokens.

class django_otp.plugins.otp_static.models.StaticToken(*args, **kwargs)
A single token belonging to a StaticDevice.

device
ForeignKey: A foreign key to StaticDevice.

token
CharField: A random string up to 16 characters.

class django_otp.plugins.otp_totp.models.TOTPDevice(*args, **kwargs)
A generic TOTP Device. The model fields mostly correspond to the arguments to django_otp.oath.
totp(). They all have sensible defaults, including the key, which is randomly generated.

key
CharField: A hex-encoded secret key of up to 40 bytes. (Default: 20 random bytes)

step
PositiveSmallIntegerField: The time step in seconds. (Default: 30)

t0
BigIntegerField: The Unix time at which to begin counting steps. (Default: 0)

digits
PositiveSmallIntegerField: The number of digits to expect in a token (6 or 8). (Default: 6)

tolerance
PositiveSmallIntegerField: The number of time steps in the past or future to allow. For example, if this is
1, we’ll accept any of three tokens: the current one, the previous one, and the next one. (Default: 1)

drift
SmallIntegerField: The number of time steps the prover is known to deviate from our clock. If
OTP_TOTP_SYNC is True, we’ll update this any time we match a token that is not the current one.
(Default: 0)

last_t
BigIntegerField: The time step of the last verified token. To avoid verifying the same token twice, this will
be updated on each successful verification. Only tokens at a higher time step will be verified subsequently.
(Default: -1)

6.4 Middleware

class django_otp.middleware.OTPMiddleware(get_response=None)
This must be installed after AuthenticationMiddleware and performs an analogous function. Just

18 Chapter 6. Class Reference

Django Two-Factor Authentication Documentation, Release 1.12.1

as AuthenticationMiddleware populates request.user based on session data, OTPMiddleware populates
request.user.otp_device to the Device object that has verified the user, or None if the user has not
been verified. As a convenience, this also installs user.is_verified(), which returns True if user.
otp_device is not None.

6.5 Signals

two_factor.signals.user_verified
Sent when a user is verified against a OTP device. Provides the following arguments:

sender The class sending the signal ('two_factor.views.core').

user The user that was verified.

device The OTP device that was used.

request The HttpRequest in which the user was verified.

6.6 Template Tags

two_factor.templatetags.two_factor.device_action(device)
Generates an actionable text for a PhoneDevice.

Examples:

• Send text message to +31 * ******58

• Call number +31 * ******58

two_factor.templatetags.two_factor.format_phone_number(number)
Formats a phone number in international notation. :param number: str or phonenumber object :return: str

two_factor.templatetags.two_factor.mask_phone_number(number)
Masks a phone number, only first 3 and last 2 digits visible.

Examples:

• +31 * ******58

Parameters number – str or phonenumber object

Returns str

6.7 Views

class two_factor.views.LoginView(**kwargs)
View for handling the login process, including OTP verification.

The login process is composed like a wizard. The first step asks for the user’s credentials. If the credentials are
correct, the wizard proceeds to the OTP verification step. If the user has a default OTP device configured, that
device is asked to generate a token (send sms / call phone) and the user is asked to provide the generated token.
The backup devices are also listed, allowing the user to select a backup device for verification.

6.5. Signals 19

Django Two-Factor Authentication Documentation, Release 1.12.1

class two_factor.views.SetupView(**kwargs)
View for handling OTP setup using a wizard.

The first step of the wizard shows an introduction text, explaining how OTP works and why it should be enabled.
The user has to select the verification method (generator / call / sms) in the second step. Depending on the
method selected, the third step configures the device. For the generator method, a QR code is shown which
can be scanned using a mobile phone app and the user is asked to provide a generated token. For call and sms
methods, the user provides the phone number which is then validated in the final step.

class two_factor.views.SetupCompleteView(**kwargs)
View congratulation the user when OTP setup has completed.

class two_factor.views.BackupTokensView(**kwargs)
View for listing and generating backup tokens.

A user can generate a number of static backup tokens. When the user loses its phone, these backup tokens can
be used for verification. These backup tokens should be stored in a safe location; either in a safe or underneath
a pillow ;-).

class two_factor.views.PhoneSetupView(**kwargs)
View for configuring a phone number for receiving tokens.

A user can have multiple backup PhoneDevice for receiving OTP tokens. If the primary phone number is not
available, as the battery might have drained or the phone is lost, these backup phone numbers can be used for
verification.

class two_factor.views.PhoneDeleteView(**kwargs)
View for removing a phone number used for verification.

class two_factor.views.ProfileView(**kwargs)
View used by users for managing two-factor configuration.

This view shows whether two-factor has been configured for the user’s account. If two-factor is enabled, it also
lists the primary verification method and backup verification methods.

class two_factor.views.DisableView(**kwargs)
View for disabling two-factor for a user’s account.

6.8 View Mixins

class two_factor.views.mixins.OTPRequiredMixin
View mixin which verifies that the user logged in using OTP.

Note: This mixin should be the left-most base class.

get_login_url()
Returns login url to redirect to.

get_verification_url()
Returns verification url to redirect to.

login_url = None
If raise_anonymous is set to False, this defines where the user will be redirected to. Defaults to
two_factor:login.

raise_anonymous = False
Whether to raise PermissionDenied if the user isn’t logged in.

20 Chapter 6. Class Reference

Django Two-Factor Authentication Documentation, Release 1.12.1

raise_unverified = False
Whether to raise PermissionDenied if the user isn’t verified.

redirect_field_name = 'next'
URL query name to use for providing the destination URL.

verification_url = None
If raise_unverified is set to False, this defines where the user will be redirected to. If set to None,
an explanation will be shown to the user on why access was denied.

I would love to hear your feedback on this application. If you run into problems, please file an issue on GitHub, or
contribute to the project by forking the repository and sending some pull requests.

This application is currently translated into English, Dutch, Hebrew, Arabic, German, Chinese, Spanish, French,
Swedish, Portuguese (Brazil), Polish, Italian, Hungarian, Finnish and Danish. You can contribute your own language
using Transifex.

6.8. View Mixins 21

https://github.com/Bouke/django-two-factor-auth/issues
https://www.transifex.com/projects/p/django-two-factor-auth/

Django Two-Factor Authentication Documentation, Release 1.12.1

22 Chapter 6. Class Reference

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

23

Django Two-Factor Authentication Documentation, Release 1.12.1

24 Chapter 7. Indices and tables

Python Module Index

d
django_otp.decorators, 17

t
two_factor.signals, 19
two_factor.templatetags.two_factor, 19
two_factor.views.mixins, 20
two_factor.views.utils, 17

25

Django Two-Factor Authentication Documentation, Release 1.12.1

26 Python Module Index

Index

A
AdminSiteOTPRequired (class in

two_factor.admin), 17
AdminSiteOTPRequiredMixin (class in

two_factor.admin), 17

B
BackupTokensView (class in two_factor.views), 20

C
class_view_decorator() (in module

two_factor.views.utils), 17
Command (class in two_factor.management.commands.two_factor_disable),

15
Command (class in two_factor.management.commands.two_factor_status),

15

D
device (django_otp.plugins.otp_static.models.StaticToken

attribute), 18
device_action() (in module

two_factor.templatetags.two_factor), 19
digits (django_otp.plugins.otp_totp.models.TOTPDevice

attribute), 18
DisableView (class in two_factor.views), 20
django_otp.decorators (module), 17
drift (django_otp.plugins.otp_totp.models.TOTPDevice

attribute), 18

F
Fake (class in two_factor.gateways.fake), 9
format_phone_number() (in module

two_factor.templatetags.two_factor), 19

G
get_login_url() (two_factor.views.mixins.OTPRequiredMixin

method), 20

get_verification_url()
(two_factor.views.mixins.OTPRequiredMixin
method), 20

K
key (django_otp.plugins.otp_totp.models.TOTPDevice

attribute), 18

L
last_t (django_otp.plugins.otp_totp.models.TOTPDevice

attribute), 18
login_url (two_factor.views.mixins.OTPRequiredMixin

attribute), 20
LoginView (class in two_factor.views), 19

M
mask_phone_number() (in module

two_factor.templatetags.two_factor), 19

O
otp_required() (in module django_otp.decorators),

17
OTPMiddleware (class in django_otp.middleware), 18
OTPRequiredMixin (class in

two_factor.views.mixins), 20

P
PhoneDeleteView (class in two_factor.views), 20
PhoneDevice (class in two_factor.models), 18
PhoneSetupView (class in two_factor.views), 20
ProfileView (class in two_factor.views), 20

R
raise_anonymous (two_factor.views.mixins.OTPRequiredMixin

attribute), 20
raise_unverified (two_factor.views.mixins.OTPRequiredMixin

attribute), 20
redirect_field_name

(two_factor.views.mixins.OTPRequiredMixin
attribute), 21

27

Django Two-Factor Authentication Documentation, Release 1.12.1

S
SetupCompleteView (class in two_factor.views), 20
SetupView (class in two_factor.views), 19
StaticDevice (class in

django_otp.plugins.otp_static.models), 18
StaticToken (class in

django_otp.plugins.otp_static.models), 18
step (django_otp.plugins.otp_totp.models.TOTPDevice

attribute), 18

T
t0 (django_otp.plugins.otp_totp.models.TOTPDevice at-

tribute), 18
token (django_otp.plugins.otp_static.models.StaticToken

attribute), 18
token_set (django_otp.plugins.otp_static.models.StaticDevice

attribute), 18
tolerance (django_otp.plugins.otp_totp.models.TOTPDevice

attribute), 18
TOTPDevice (class in

django_otp.plugins.otp_totp.models), 18
Twilio (class in two_factor.gateways.twilio.gateway), 9
two_factor.signals (module), 19
two_factor.templatetags.two_factor (mod-

ule), 19
two_factor.views.mixins (module), 20
two_factor.views.utils (module), 17

U
user_verified (in module two_factor.signals), 19

V
verification_url (two_factor.views.mixins.OTPRequiredMixin

attribute), 21

28 Index

	Requirements
	Django
	Python
	django-otp
	django-formtools

	Installation
	Setup
	Yubikey Setup

	Configuration
	General Settings
	Twilio Gateway
	Fake Gateway

	Implementing
	Limiting access to certain views
	Enforcing two-factor
	Admin Site
	Signals

	Management Commands
	Status
	Disable

	Class Reference
	Admin Site
	Decorators
	Models
	Middleware
	Signals
	Template Tags
	Views
	View Mixins

	Indices and tables
	Python Module Index
	Index

